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FLUTTER CALCULATIONS IN TEREE DEGRi3ES OF FREEDOM

By THEODOREThODOBSBN and L E GABRICK

SUMM.AIZY

Z7L8present paper ie a eontinua&”onOjth general +@

oj$utter publtihed in NACA Reports Nos. .&Wand iltlf.

% paper is mainly dizmkd to $utter in three degreesof
freedom (bendi~, torsion, and aileron), for whioh a

mumber of ~elected cuees have been calculated and pre-

8ented in graphical form. % Tewdte are anai?yzedand
dieouesed WM regard to the efecte of 8trueturaJ dumping,
of fractional-qwn aiL9ron8zand .oj mae8-baknoing. TL9

analyeis showe that more emphusi.e 8hou.ld be @ P thi?

effect of dructurai O?ump”ngand le88 on mace-balaw-ng.
3%-8conclusion is drawn that a dejtni.te minimum amount

of structural damping, which is usually fbund to @
pre88nt, is es8entiul in the calculations for an adquate

dewription of the $utter me. Theoretical $UWT pre-
diction are thus brougti. into 6?08eragreemd wdh the

fade of experience.
A brief dhcu8&Tn is included of a patiou& biplQ8M

thai hud expmiencd $u&%r at about M(2 miL48per hour.
Some einaplzjcationa hare been a-chimed in the method qf

Cakulatwn.

INTItODUCWION

Since the publication of the previous flutter papers,
the necessity of considering complete cases of three
degrees of freedom including the ef%wt of structural
damping has begcme evident. The purpose of the pres-
ent paper is therefore to prcmnt such extensions of g’kn-
eral applicability. The cakulations herein reported are
direc~ based on methods tdready given in refacences 1
and 2. The earlier papers ded, to some extent, with
cases of three degrees of ileedom and also indicate that
the internaI structund damping in some cases has a
great dlect on the flutter velocity; a small value of the
internaI damping may suffice to bring the flutter mkw-
ity from nearly zero to a normal value. Thus, in order
to obtain better agreement with practice, the existenoe
of a certain amount of internaI damprng must be
recognized.

A separate investigation on &e subjeot of hysteresis
in airplane shuctures, which has be-enconducted in the
meantime and wiU be reported m detail elsewhere,
shows that a significant amount of inhrrwd damping
(9u > 0.01) is pr=entj usually with considerable ~.
gin. This low vahe of g. = 0.01 is found to be efFeo-

tive in mmothing out the low-velooity flutter values
appearing in flutter curves calculated for the case of
zero intend damping. A simik eflect of dMerent ““_...~_
origin is the so-called fractional ailaon~au &eot.
This effect was noted in reference 1 for binary casea and
is here aIso treated for ternary cases. Stxangely
enough, a reduction in the length of the aileron from
that of the full span ta a shorter Iaugth haa a diqmopor- ‘“”
timdy krge effect on the flutter velocity. Thus, the
cahxdated flutter speed for a full-span aileron maybe of
a low value; whweas, for a half-span or even a three- . .. ....

quarter-span aileron, it maybe nearly normal.
It is of intereet to note in connection with the study

of three degrees of &eedom that the addition of tie
third degree is the cause of a reduction in the flutter
speed based on only two degrees. If a control surface is
msdxdanced, is reasonably sti6, and a certain mini-
mum amount of torsional damping is present, the
bending-torsion vahe of the flutter speed@ be cIoseIy
approached.

The foIIowing study originated in au investigation of
a certain biplane in which fhtter had been experienced
on a number of occasions. Two of these bipknes were .-
made availabIe at Ls@ey Field for the purpose of the
investigation. These biplanes were subjected to the
convmtiond vibration tests in order to obtain the
flutter parametem, and the flutter speed was calcdated.
These calculations were used as the nucleus m the fol-
lowing study of flutter in three degrees of freedom. For
readers particukdy interested in the biplane mentioned,
an appendix (appadix ~ has bem prepared.

It shmdd further be mentioned that some simplifica-
tion has been achieved in the method of calcuktioL
This simp~cation is based on an analogy with Sylves-
ter’s method of elimination and reduces quite notkeably
the Iabor of calculating the flutter speed for three
degrees of fieedorn. 4pendix B presds a summary of
this method.

RESULTS

The rmdts of the tMiWr calculations am presanted
in @ures 1 ta 40. h tabks I to IX the omstant
parameters and the variable parameters are arranged
to serve se a key to the @ures. In order further to
assist the reader in the study of the curms, a brief
description of the &urw wilI be giveR
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It wiII be noticed that the ordinate for all the curws
is the fluttar speed in the Coef6ciaut form v/bu.. The
product b. is thUSu~d ss a ref~~~ veilocMythrcugh-
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out. The symbols used in this paper are defined in
appendix A.

The figures are arranged accmding to the vahws of
ra’: @gures 1 tO 11, 7.9=1 (biplane case); figures 12 to
28, T.9=0.6; figures 29 to 36, r~*=O.25 (monoplane
case). Within each group a further arrangement is

which cmresporxle to the bending-torsion binary
flutter value.

F- 2 shows the eHect of the torsional structural
damping coefficient g==O.O1 on some of tho curms of
figure 1. Note that the dip in the flutter curves is now
eliminated and that the flutter coefEcient dots not
differ by much from ita bending-torsion value.

Mgure 3 shows the individual effects of the structural
*p@ COefEtienti g=, gp, and gh on the flutter co-
ei%cient for the constant paramckers x~=o.002 and
u5/%=0.t333. ~ote that g= has the greatesh effect in
increasing the flutter speed.

TIM parameters for the next set of curvw (@. 4)
differ flom those of figure 1 only in the value of X.,
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made according to the value of K, the wingdenaity
parameter.

Figure 1 shows 8 number of curves plottkd against
the aileiwn frequency ratio Q@/ara,with CO=thus used as a
reference frequency. The wing bending-frequency
ratio ~~tia is kept mmt~t. The CUrVSSMa OdY
in the value of zp,which determines the deg.reaof aileron
mass balance. Note the low dips pwent near ar5/co==1.0
and the shifting of these low spots with the value of
XP. All the curves approach an asymptote for o~/w~+co,
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which is now O;that is, the center of gravity of tho main
wing coincides with the elastic axis at the 40-percen&
chord position. Again, for values of z~of Oand 0.002,
low dips exist near ov/tia= 1.0. For x$= —0.002, tho
low dip does not mist. The bending-kwaion huttcr
vahe St uJu== cois ccmsiderably increased over that
for Z==0.2 in figure 1.
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Figure 6 shows the etlecti of the tmaional structural cwes presented in figure 4 (Z==O, z~=O.002). The
damping coefiicknt g==O.01 in increasing ,the vahe of effect of g.=0.01 is shown for compariwn. It is iniar-
the fluttm speed. Rgure 6 gives several curves for a eating to observe that in the rcmge uP/w~<l.O the effect

of ~ is signi6cant. In the comparison of this case with
1.6
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44

SWUMl!L-Flnttez”oMmlont WA lwrdrMtfrmuenormtfo(@a for=veral Vduw
oftheti unhdeaoez8. * 0.2+rd, 0.6; no dampins.

figure 10 (x~=O.2), it appeam that t=O.8 is of more
irdluenca on the case X==O while g==O.O1 k more
e&ctive on the case Z==0.2.

The next set of @urea @gs. 12 to 28) has been cfd-
culati with raz=0.5. F~e 12 is similar to figure 1
and shows the flutter-speed coefficient plotted against
aileron frequency ratio for several vahms of xb. The
eilect of structural damping is indudcd in figure 13.
Figure 14 is a cross plot (similar to fig. 3) against th~
structural damping coefkients ga, gp, and g~. F-
16 extends the cases given in figures 13 (a) and 13 (c) b

.

0 .2 .4 .6 .8 LO L? L4 [6 1.8 0 .2 .4 .6 .8 1.0 12 1.4 1.6 L8 2!0

(s) S#-o.oo.z (b) q-o.
(0)Z#--c.cm (d) r#--o.w.

nom n.mtla weakfmtII/bagdnatkeamwmtio 4-s wfthmdwitlmtU&nofmdtom$oddamphg.~ 0.2; f#, 0$ Mk/*.,O.wr.

constant due of z@of 0.002 and for dithwent values of
X= (0.2, O, and –0.1), with and without structural
damping.

Figure 7 represents a case for which z.=–O.1 and
Zp= -0.006. Case 1 (bending-kmion) is completely
stable.

I&me 8 shows the efkwt of & the partiakqxm aileron
coefficient. The curve ~=LO is ts.km fkmn ilgure 1
(Z6=0.002) and is the case of the full-pan aileron.
~ote that even a small reduction to &=O.8has a marked
favorable effect, especially in the range of frequencies
wP/w=<l,O. As &O. (no aileron), the curves approach
the bendin@orsion flutter value.

Figure 9 represents a plot against # for a constant
value of ~~w. of 0.833. F&we 10 is intended to show
a combined tied of #=0.8 and ga=O.01. For mm-
pariscm the sepamta combinations t“= 1.0, g.=O;
F=l.0, gc=O.O1; and #=0.8, g.=0 are b 8hOWIL

Figure 11 shows the eflect of ~=0.8 on one of the

include othar vahme of the frequency ratio w&/w=.Fig-,
ure 16 represents a case of a Iighter wing for which Kis
0.25 instead of 0.2. The value of zp is 0.002; curves
with and without structural damping are given. Figure
17 has the same conditions presented in figure 16 excapt
that x. is equal too instead of 0.2.
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Figure 18 k a pIot of the flutter coefbient against the
wing bending-frequency ratio, for a constant vrdue of
uJcd= = 0.5. The case +. = m corresponds now to
the binary case, torsion-aikron. The branoh repre-
senting essentially this ease is easiIy evident. Figure
19 differs hom @ure 18 ofly in the vahe of a~/u=,
wbioh is now 1.0. The brsnch representing tmsion-
aikron is now gone. . (The smd singular branoh on the
axis near UJU= = 1.1 can be shown to disappear com-
pletely with a very small amount of fiction.)

Figure 20 d&rs horn figure 18 h the value of K,
which is now 0.2, and aIso in the value of au/a=, which
is now O. In addition, several vahm of X8have been
empIoyed. ~ote that the aikron-tomion branch
beyond uJu==l.O &sts only for the largest unbal-
ance, z~=O.0U2.

.

I&we 21 difka km the paraUeI cases shown by
curves zp=M02 in figures 12 and 16 only in the value
of K,which is now 0.125; that@ it reprwents a heawkr
wing or a higher altitude. Note that w=o.002 does
not ehninate the torsion-aileron branch. The effeot
of g==O.O1pnyhmes a fiutkr curve, the ordinate of
which is remarkably near the bending-torsion value. ___

Figure 22 cIMers hwm figure 21 in the vaIue of % .._
which is now +LO02. The low dip nem qJa==l.O
is eliminated for a value of g== O.01. Figu@ 23
extends the cases of &res 21 and 22 b two o~m
values of the frequency ratio a~u=. .

Figure 24 is a plot of the flutter coefhient against ““”
g=for the oonstant value of ~=0.002 and uJw==O.316. ‘
(See & 21.) lXo* that the tmsion-aikxon lmuyh ___
is gradually eliminated and vanishes for g== 0.006.
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Figure 26 represents a SW heavier wing (K=O.083).
This curve shows thst 93=0.002 does not eliminate

either the tmsion-ttileron branch or tie bending-

aileron branch for low values of uJu=. The value
.=
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~=0.7 as shown eliminata the low branches. Tho
value g-= 0,02 eliminates the torsion-aihron brmch
but has little influence on the bending-aileron branch.
Figures .26 and 27 represent similar roses with x@=O
and with sevqal values of the frequacy ratio ub/w=,
In tho oases represented by figure 26 (G=O.2) the
center of gravity of the wing is at 50-percent chordt
and for those of &u.re 27 (z~=O) the center of gravity
is at 40-percentmhord.

F~re 28 represents a case in which K=O.25, z==O,
and u~u.= 1.0. The figure shows that tho bending-
torsion flutter branch is eliminated and only the
torsion-aileron branch exists. This branch can also
be eliminated by increasing the value of g=.
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The next set of figures (figs. 29 to 36) h%ve been
calculated with r=3=0.25 (monoplane case). Fiie
29 shows the flutter coefficient plotted agahst c@.
for two Vahles of q: 0.002 and —0.002. The effeot
of structural damping, g== O.01, is @own in figure 30
and the effect of the partial-span aih.wn coefici~t ~
is shorn in figure 31. Figure 32 extends the oases
of figure 30 to other vahes of the bending-frequency
ratio MJOJ=;@ures 33 and 34 represent pardkl csw
for a heavier wing, K=O.125.

F~e 35 represents a. monophme case with
pmsmeters based on a modern heavy pursuit &plane.
For completmess, several curves ~ sILcmmwith dif-

hun W.–mtwmmtdmt mk -*m*ms# hlthaantkymnleb
ridcweaf ar%werdvalueadthe prthkpm Sfkmu OD@dent t..ludwu,-o;
d-u

ferent VSIUESof the bending-frequency ratio aJu=.
F-36 is based on the parameters for a modern kge
airplane. Two values of Kare prwented: 0.25 and 0.1.

The re8t of the &urtx3 were calculated for two
oomtant VllhK?S:a@a=O and @A/@a=O(antisym-
metricd flutter c-). Figure 37 shows the flutter
coticimt plotted ag8in9t g= for four values of x$
(0.004, 0.002, –0.002, mid –0.006). It is observed
that the effect of g= is quite s@cant. I?Qure 38
shows the flutter coefficient plottwl against t for the
same mikes of * that were used in figure 37. The
&eofi of f in figure 38 is rather large. Figure 39 is a
cross plot of @ure 38, with ZflM tie abscissa. Figure
40 is a plot of the flutter oo~cicmt against g=for three
values of r~~(1, 0.5, and 0.25) and for two valuw of z~
(0.002 and –0.002).
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DISCUSSION

The first noteworthy observation iR the case of thre[
degrees of freedom is the distinct dlp in the flutte]
curve at values of U8/OJasomewhat less than unity
when structural damping is neglected. Apparently LIN
aiIeron under these circumstances is very nearly in
mechanical resonance with the wing in torsion. It iE
further observed that the flutter velocity remains
rather low in this range of values of the aileron fre-
quency. Since the demn frequency in most practical
cases is definitely less than that of the wing torsion, the
region bdow unity is of the most significance.

There are two types of aileron response: One type
corresponds to symmetrical wing motion and the other
type corresponds to an antisymmetrical motion. The
frequency of the first type is of the order of one-haIf to
three-fourths of the torsion frequency and the fre-
quency of the second type is zero. It is noted that the
elimination by mass-balancing of flutter resulting from
the symmetrical type of response may be dificulti,
particularly if the aileron frequency is close to the wi,ng-
torsion fre@ency; whereas, the antisymmetricaI type
is more favorably affected by normal mass-balancing
of the aileron. It is also to be noted that th~ wing
damping is unusually effective in remo~ the dip in
the flutter curve. Indeed, for comparatively light
structures a value of the tursiomd damping coefEcient
g= of 0.01 brings the flutter velocity almost back to its
full bending-torsion vahm. Signhicantly, the torsional
damping seems to be the most. effective. ..Heavier
structures appear ta be less susceptible to the effect of
damping. In fact, a larger vahzb of. g. is needed and
apparently it maybe necessary aIso to provide damping
in one or both of the other degrees of freedom (fig. 25).

A partial-span aileron has a rather profound eilect
on the dip in the tlutter curve, which is similar to the
effect of the damping. A reduction of the eilective
aileron Iength t from 1.0 to 0.8 practically restores the
normal value of the flutter speed.

It is rather evident from the present study that the
effect of mas~baIancing has been overemphasized in
the earlier literature, Of significance is the. fact that
a pronounced dip exists in the flutter curve even for
an overbahmced aileron (&g.1). The aileron baIancing
seems to become most Mective for the case in which
the wing itself is overbalanced (fig. 7). This case is

ody of academic intcrwt. Overbalancing alono dom
not present a solution of t~e general caso of Lhrw
deg~ of fkedom; tile appropriate value of the -flutter
speed cannot be obtained solely by any practicahla
method of balancing.

On the other hand, the greatest beneficial effect of
damping is obtained for the unl.danced, that is, the
normal wing (fig. 6). Only in this case is tho full
bending-torsion value nearly reached. In t.ho rango of
hequencies wJu.< 1 the flutter speed of tho overbal-
anced wing remains much lower than that of the nor-
mal wing. It is further noted that the beneficial effect
d aiIeron balance is small when a small amount of ~.
damping is present (~. 2).

I?or the antisymmetrkd case with no damping
PIW@lUa=O, it is observed that tk balancing of W
&mm is more effective. For a given va]uo of tha ‘- ‘-
Lm_sionaldamping coefficicmt (g~=O.01) the gain from
bahmcing is.not large. The efhct of the fractional
ileron is very marked. At t=O.8 the fluLtcr velocity
quals the tqsion-bending value indepondcntly of the
mlance c.dicicnt.

CONCLUSION

It has been shown that mass-btdancing is of kss
iificance than has heretofore been attributed. b it.
rhe profound effect of internal structural damping has
]een shown. For the normal, unbalanced wing a small
lm&nt of damping rcmoycs the dip in Lhcflutter curve
md substantially yields the torsion-bending valuo of
he flutter velocity. The large beneficial effect of tlm
iactional-span aileron has been indicated. These stak-
nents xpply to light, Iowdcnsity structures and apply -
lo a lesser degree as the wing density is increased.
3ecause of the complexity of the problem, too general
:onclticms cannot be safely made and dct.ailed calcu-
ationa of individual cases are still needed. Tho in-
Juded graphs, which cover a fairly representative field,
hould beef value for specific studies and should furnish
mmerical solutions in a number of cases.

JABTGLEYMEMORrAL AERONAUTICAL LABORATORY)

NATIONAL ADWSORY COMMITTEE FOR AERONAUTIC)

L-NGLEY FIELD, VA,, June ‘7,1$.Q.
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APPENDIX A

LIST OF NOTATION

a angle of attack (fig. 41)
B aileron angIe (@, 41)
h verticaI distance (fig. 41)
b haLfchord, used as reference tit Imgth
a coordinate of dastic tis (tdao C&d axis

of rotation or tomicmal- axis) (fig. 41).
Location of elastic axis in percentage
totaI chord meesumd frmnleachg edge is

IN ;+: or ~= 2 (ehwtic asis) _l
2 Loo

CkK7rlkr Trut7iq
*~ Aii$.bcrd ed~

-//2 ,—c-+ I

cg. of uihcn----;

Fmrm41.-Hdf chxdbts nseda6thaudtkm@t. The PosIthdfrecMGMaf

cuE,@k~MMby~ Notatlmtak4m6=sumdh 3mmiMmrdaul
&ismmmredfrom tilaek?tkdspDmvEtotllftright. AuonotetMtz#isa
"munced''Fammek!randn&thea'ctQala LstaQmfiomthehbKetotlmcenferc4
gravityoftheanfmn.

coordinate of aileron hinge asis (fig. 41).
hcation of aikronhinge axis in percenh
age total chord messured from leading
edge is
loo l+C or ~= 2 (aikron Hnge) _ ~

Y- 100
mass of air per unit volume
mass of wing per unit span Iength
ratio of mass of cylinder of air of diametar

equfdtO chord ofwingtimasofw@
both taken for equal Iength along the
span; this ratio may be expressed as K=
0.24 (&/W) (P/PJ where W is weight in
pounds per foot span, b is in feet, and
P/POis ratio of air density to standard air

Iocation of center of gravity of wing-aikon
system measured from a (fig. 41); f%,
static moment of wing-aikron per unit
span Iength refwred to a. Location of
center of gravity in percentage WiaI
chord measured km the kading edge is

~w 1 +a+-z= ~
2

~+z==2(center of gmity)_l
100

reduced location, of center of gravity of
aiIeron referred to c (fig. 41); &, static
moment of aileron per unit span kmgth
referred to c. M refers to total wing
m= snd not to mass of aikron sdone

radius of gyration of wing ailaron referred
to a (fig. 41); 1=,‘momcmt of inertia of j
wing aileron about elastic sxis per unit
span Iength

reduced radius of gyration of aikron re-
“ferred to c (fig. 41); lfl, ‘moment of
inertia of aileron about c per tit span
length

torsiomd stifl%- of wing around a per
unit span kngth

torsional stiibss of aileron around c per
U@ span Iength

stiffness ofwingin bendingperunitspan -
lqth

natural angldm frequency of torsional
vibrations around a in vacuum (a==
2~a, whwef= is in C@- p= @

natud anguIar frequency of torsionaI
“tibrationa of aikon around e

natural enguk frequency of wing in
bending

time
speed of forward motion
angular frequenqy of wing vibrations
reduced frequency =mrmber of waves in

wake in a distance equaI to semichord X “- “”
2T

reduced wave kngth-hgth of one wave ‘
of wake in terms of 8 distance equal to
semichord X2r

flutter-speed coefEoi&t
structural damping coefficients; zg cor-

responds approximately to the UsuaI
logmithmic decrement

partial-span aileron cuefhient. I!Totethat
this coefhient is not the geometrio
ratio but an “efhotive” value of the
order of [Yf(cz)dz]Z/Yj’(a)dq where the
integral in the numerator is taken over .
the aikon span and that in the d-
nomkwtor is taken over the full span;
j(a) represents the. epanwise amplitude
of (flutter] torsion mode
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APPENDIX B

METHOD OF ELIMINATION AS APPLIED TO FLUTTER CALCULATIONS

The treatment of the flutter probhxn (references 1
and 2) leads to the simultaneous solution of two equa-
tions. The degree of each of these equations in the
general case of three degrew of fieedorn, (flexure, tor-
sion, and aileron) is three. If, in addition, the efFect“of
a tab motion or a float is desired, the degree of the
equations may be more than three. The nuxnericrd
calculations involving the plotting of roots beco~es
laborious and tim~onsuming. A method of &mina-
tion for obtaining common roots of two simultaneous
equations may be used, which does away with the
necessity for-any root extractions. (See, for example,
reference 3.) The procedure results in the roving of
considerable effort, particularly when more than two
degrees of freedom areinvohd. The Sylvester method
of obtaining the condition that two simultaneous equa-
tions have a common root cmnpletely eliminates the
unknown quantity. It is fewiible, howeter, to termi-
nate the procms of elimination with two. equations of
the first or second degree. The choice made in the
following sectioti is the use of two equations of the
first degree.

The equations arising in the calculations in the case
of three degrees of freedom are of the form:

A@%-+A~X+Ao=O
Bfl+BJ?+B,X+B,=O }

(1)

where in special cases the degreeaof the equations [(3,3)
in equation (1)] maybe (3,2), (2,2), (2,1), or (1,1). The
quantity X is an unknown frequency parameter, ~nd
the coefficients A and B are functions of a hwge number
Of pammetem: StrUCtUr&lparameter a, b, C,Za, ZP,?a2j

TP2; K, gm, gb, and g~; frequency paramekm ~b$ % QB;

and the reduced frequency l/k. For a particular air-
craft structure represented by given parameters there
corresponds a flutter velocity and a kquency deter-
mined from X “imdl/k. Expressions for the quantities
A and B are listed in references 1 and 2. In the follow-
ing discussion it is assumed that these quantities are
available.
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The common solution of equations
tained horn the common solution of

alX+&=O
blX+bO=O 1

(1) can bc ob-

(2)

where al, %, bl, and b. are functions, listed later, of t.ho
A’s and B’s in equations (1). ~ow, from equations (2)
it is evident that the common adution exists if and only
if

Xl=–aJ% is akm equal to XS= –b$bl

Then, if all the parameters bu~ one aro lwpt constant,
for inStSRCSI/k, and Xl and Xl are plotkl against I/k
the intersection (or interecctious) determines Lhocom-
mon root (or roots) X and tho vahm (or values) of l~k
for which this common solutioh occurs, rind X and l/k
together determine the flutter solution for the particu-
lar structure.

Another possibility, namely, keeping l/k 13.mdand
plotting X against one of the structural or frequency
parametem, will yield as a flutter solution the necwary .
structural parameter. Many variationa are possible.

The Sylvester resultant of equations (2) is tbo detm-

al %
minant”

bl bo
and its vanishing is t.~e condition for

the existence of a common root. If Ws quantity is

plotted against I/k as the abscissa, for instance, the
intersection with the 1/k axis @ws the required valuci

of l/k. The fire~mentioncd method involving two
parametem is preferable, however, bocauso Lhc two
curves are aimpkr and yie~d both X and l/k simul-
taneously.

There r&nains, then, onIy the task of Iisting the
expr~ons for al, ao, bl, and bo. It is convenient to
list these expressions separately for the cases in which
the degree of the equation is (2, 2), (3, 2), and (3, 3).

In order to obtain ~, ~, bO,and bl for the ctic of two
quadratics, multiply the first of equations (1) by &
and the second equation by x% and subtract; and
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simihdy nmltiply ti fit of equations (1) by B2X+B1

aud the second by A2X+A1 and subtract. Then

Similsdy, for one cubic aud one quadratic

Ibo= A@l-AIBo
B. -

! two cubim

& Al
B. B1 I

I

&&
l?. B,

I
& A,
B. B2

I
A, &
B1 B8

& A,
30 B1 I

,

(3, 2):

,

In the use of this method it is sometimes found that
the common intersection is not obtained with precision
without the use of many values of I/k. It may then
appear to be more, convenient to employ a Wlerent
form. Thus, in the case of two cubica, there are three
poasible forma for%, al, h, aud bl and a second form is

%=

(q.

&=

z& A, IA, &
B@ B8 B2 B*

I II

&A, A1z&
B. Bz B1 B8 I

h

I

&&
B. B,

& A,

130 B, ,

IIAl &
B, B,

I IIArt 4, Al A,
+

B, B, B1 B,

b,=aQ

The method is not limited to the original form of the
equations. Assume, for example, tha~ both X and l/k
are preassigned and that it is required to Imow the
vaIuea of two psrame~, say ~ and u, which have as
the flutter solution the preassigned valuea of X and
I/k. The originaI equations can be considered as
equations in WI and w whose common soIution is
determined by

QWI+-ail=o
blul+bo =0

where %, %, bl, and b~we Imown (cslcuIabIe) functions
Of all the other parameters. If the two mote ~e
plotted f@inst ~, the iUtHSt3CtiOIlS (ii any) fi gh

the required wJuee of ~ and ~.



APPENDIX C

EXAMPLE ON FLUTTER OF BIPLANE

Experiments on the vibration frequencies.showed tl.M,
following results (values given in cyck PW *).:.

1. Antisymmetrical torsion of wing-cellule
~ti------------------------------ .1300”

2. Symmetrical bending of wing-cellulq sys-
tern. ----_ ------: ___________________ $00

3. Symmetrical torsion of wing-celhde system- .1300
4. Local wing bending:

a, Lower wing, with node at or nesr inter-.
plane stint_ ---__ --–_ ------, ----- 13.00

b. Upper wing, with nodeat or near inter-
plane stit-----_-”,-----------_-.”, “11OO

5. Aileron against mnttils---.-_------_-_-- 1100
6. I&al torsion in dmon----------_-----.- MOO
7. Local torsion in flap ------------------- 1100.
8. Engine mtig -------------------------- 830

There are two possible typea of ternary flutter:
a. Symmetrical torsion-s ymnietrical bending-

symmetrical aileron motion, The frequenci~ are 1300,
800, and 1100, respectively.

b, AntiaymmetricaI tmsion-antisymmetrical bending-
antisymmetrical aileron motion. The frequencies are
1300,0, and O,respectively.

The othar parameters were used as follows:
a= —0.2 (elastic axis at 40-percent chord); ~a=O.2

(cedar of ~vity at 60-percent chord; the actual center
of gravity was near 48-percent chord); ?’.a= 1; K=Cf.2

(his value of the wing-density parameter oorrmponds

not to sea level but to an altitude of approximately

10,000 ft); 2b=A feet 9 inches (reference chord).

With the use of these parameters, there is obtained
for the torsion-bending (case 1) flutter-speed co”kf3cient
u/buafrom figure 1 a value of 1.26. The reference
velocity bu= is equal to 221 miles per hour. Thus the
flutter speed VFis equal b 278milesper hour. Because
the observed flutter speed on this biplane was lower
than this value, (about 200 mph), the aiIeron was e~i-
dentIy involved. The parametersrelating to the aileron
were assumed to be w follows:

Locationofthe centerof gravity, Z8.. . . . ------- 0.002
Radius of gyration, r~--------.--.-----..---- 0.002
Chord location, c--------------------------- 0.6

The aileron was considered a full-span aileron. This

assumption is fairly reasonable beoauae tb~ lower wing

flap was almost identical with the ailexon. These

valuea were us-~ in the results shown in figure 1, which
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ww based on the biplane. Tho ratio au/w==0.833
gives, for the amuncd unbalance ZB=0.002, a value of
the flutter coe.ftkienti u/fw= of 0.68 or a speed of 151
mi.k p~ hour.

For the antisymmetric.al case, if a full-span aileron
and zero damping are conservatively coneidercd, Wm
is obtained from figure 37 the valuo v/bti.= 0.41. A
value of the internal damping g= of 0.01, however, in-
creases the flutter coefficient to 1.18, which is cqunl
to 261 miles per hour (true speed). ~otico that this
value is calculated without the benefit of a fractional
ailwon. If there is used in the symmetrical caso a
small value of the internal damping g. of 0.01, it is
seen from figure 2 (b) that thcro is only a alight favor-
abh effect from mass-balancing. The flutter cocflF
cient v/bw is equal to 1.10 for a!p=0,002 and increases
to 1.16 for xB=- 0.002. With the use of v/bw.= 1.1,
there is.obtained a flutter speed of 243 miles per hour
(true speed). From later experiments it has been
found that the value g== 0.01 is evidently a safo valuo
to use in such calculations. It is thus noted that &o
flutter speed, because of WS efkct, approrwhcs tho
torsion-bending value. It is further observed that with
this amount or a hwger amount of damping tho mass-
balancing of the aileron becomes fairly ineffective.

Since the calculation for the symmohical case based
on ga=O.O1 gives vaIues of the flutter velocity in tho
order of .240 miles.per hour, truo speed (comesponding
to an indicated speed of approximately 206 mph), it
is probable that this case describce the obscrvod flutter,
which was known to be symmekicaL

This biplane was aerodynamically cleaner than many
of the earlier types and it is possible that tlm abscnco
of numerous interplane wires and struts contribukxl to
a lowering of the tmaional damping effect to such an
extent that flutter was invited. No doubt, many of
the older @pea of biplano were aafc from flutter bccausc
Of thOir large s@uctur@ *piW.
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FLU’ITEIR C~TIONS IN THREE DEGBEES OF EEEEDOM

,TABLE I

[r=%1;G“u G 0.5;G -O* r+ O* r,l, O.O@& LO]

I
L.. —-– . .._do _____ .

1

. .._do ------- .

.-_do. ______
‘---- ---–do--–_—— :fkm’ I .(

1- 11..–-to.-.-–-t :g –. ME. o

I–.W2. o
.m7 .mz o
.mi’ .m4 o

: :-1}:::%----==1:%I :$!:.O1
2 (c).

#2 .01
~--- --- L---do --------- :!%

-.032 0
–.M2 .01

-. .em .W2

TABLE II

k=’,1;q 0.2+G 0.6a, -U r,~rO@ L 1.O’I

Fignre

I “’”” l=k

[

Variable-.._.__
4_____ ---do—__

.-_do ______
6 (U)...... .–.-do--_–—_

..-–do______
5 m)------ .----do---———

._..do --------
-–_do --------
..._do. -___...

6------- _l=~:_. _.._...
——

.–_do--—_
----do.—_

7----------{=%==

-: Ck32

.002
0
0

:%

:%
.mz
.032
.W2
. ma

–. 025
-. 0u5

-

0
0
0
0
0

:

::
0
0

—.1
-. 1
-. 1
-. 1

,

TABLE 111

Hr
dnble...

s._._— _y:__
——

....do _____
9---------- os6--—_

r

arkible______
10. . . . ----- ---do__

.-Ao_—-—

._do..__

[

---- —- —-—
11------- .:::_:: -----

—-—

Cm&
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.&n

.Mi7

%
.M7
.Ca7
.0)7
.507
.607

aa
.2
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.2
.2
.2
.2
.2
.2

0
0
0

-o 0
0 0

0
; o

0
0
0 :
0 0
0 0

0
: 0

‘arh le

r=

o
0
0
0

.01
0
.Cd

o
.01

0
.01

0
.lx-

o
.01

f=

o
0

:
0

.O1

.01
0
0
0
.OI

o

,

{

Varfuble______
12___ .--do_—_—

---- do_—————
.-..do___

.-.& _______

.–J30...___.

._do._.—-.

.–.do ______

p
14a --- 0.507.-------

H @z: f+h___
.-— —

ls (b)_. ..::do____

\
. ..-do.____—
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I {
--do-_- .. . . . . .

E (d)_- -_-do ------
.-.do . . . . . . . . . .

Figure urni. ●+=
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0
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0
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0
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0
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0
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0
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0
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0
m
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TABLE VI
[~=~,O.w,c, O.&q -O.? z=, 02; rp, O-@Ml

mure~G@!. I +.

m

I
ariable. . ..-.. -. . . . . . . . . --do. -.-.._.

al (a). -.. ._.do _______
. . ..do -------

ao (b).-. . . ..do ... ..-—-.
. .. Ao--------

Jlo-- . . . . . . . .
81.- . . ----- ‘--d~------.-. .

a2(a). -. : -&:-: ------s - . . . . . .

a2 (b).-.
. .. AO . . . . . ..--..
._.do ______

a2 (0)...-.
. .. AQ.- .. ..-–.–
.-.do ------------

32(d)___ :::~~:-;:-
do..~-:___6d(@----- :~:do ______

2a (b)----- _-do ... . . ..–..-
._.do . .. . . ..-...-
. . ..do.._...--—

a3 (0)- . . . . .—do..._ . . ..__
. . ..do. --------

a4 (a).-... ._.do._..---—
.._do._-...-..-

a4 (b)-.— ..do.. . .._._..-
. . ..do. .._. -----
_..do._ . . . . . . . . .s4(0)---- ----do---: .- .-—
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.em
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LO
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LO
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LO
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.m7
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LO
LO

z

).3
.2
.2
.2
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::
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.125
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.lm
.lm
.128
.lm
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% E

Lo
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LO
LO
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LO
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LO
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LO
LO
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LO
LO
Lo
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i o
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LO
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o
0
0
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0
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0
0
0
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o
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o
.Oa

o
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o
.Oa

o
,m

o
.Oa
.Oa

o
.Oa

o
.01

0
.03
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=2-133.I.L-I
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[

arable....--.—. 0.816 0
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3a(b)._. . . ..do ----------- .600 0
. . ..do -------- .am .C!3

aa (o)---- ::::*::--::— :~ 0.Oa--——
M (d)--- . . ..do—..- . . . ..- 1.0 0

....da-.-- .....—. LO .Oa
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TABLEVIH
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TABLE IX
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